Расширения Joomla 3

UDC: 547.574 + 547.863.1

Mukhtorov L.G., Karimov M.B., Shakhkeldyan I.V.,

Atroshchenko4 Yu.M.

REFERENCES

  1. Cabal M.P., 1,2,1, 3, and 1,4-Diazines and. Related Systems. Modern Heterocyclic Chemistry / M.P. Cabal, J. Alvarez-Builla, J.J. Vaquero, J. Barluengo, Six-Membered Heterocycles // Weinheim. Wiley-VCH Verlag & Co. 2011. – Pp.1683 – 1776.
  2. Shibinskaya M.O., Synthesis and biological activity of 7H-benzo[4,5]indolo[2,3-b]-quinoxaline derivatives / M.O. Shibinskaya, A. Lyakhov, A.V. Mazepa, S.A. Andronati, A.V. Turov, N.M. Zholobak, N.Ya. Spivak // European Journal of Medicinal Chemistry. 2011. – Pp.1237-1243. doi:10.1016/j.ejmech.2010.11.040
  3. Luo X., Cinnamil- and Quinoxaline-Derivative Indicator Dyes for Detecting Volatile Amines in Fish Spoilage / X. Luo, L.-T. Lim // Department of Food Science, University of Guelph. Guelph. 2019. – 13 p. doi:10.3390/molecules24203673
  4. Achelle S., Luminescent materials incorporating pyrazine or quinoxaline moieties / S. Achelle, C. Baudequin, N. Plé // Dyes and Pigments. Elsevier. 2013. V 98. N. 3. – Pp.575-600. doi:10.1016/j.dyepig.2013.03.030
  5. Kim H., Synthesis and Characterization of Quinoxaline Derivative as Organic Semiconductors for Organic Thin-Film Transistors / H. Kim, M. R. Reddy, S.-S. Hong, C. Kim, S.Y. Seo // Journal of Nanoscience and Nanotechnology. 2017. V 17. N. 8. – Pp.5530-5538.
  6. Jonathan L., Quinoxaline-oligopyrroles: Improved pyrrole-based anion receptors / L. Jonathan, M. Hiromitsu, M. Toshihisa, M.L.Vincent, F. Hiroyuki // Chem. Commun. 2002. N. 8. – Pp.862 – 863.
  7. Gu Z., cytotoxic evaluation and DNA binding study of 9-fluoro-6H-indolo[2,3-b]quinoxaline derivatives / Z. Gu, Y. Li, S. Ma, S. Li, G. Zhou, S. Ding, Zhang J., Wang S., Zhou C. Synthesis, // RSC Advances. 2017. V 7. N. 66. – P.41869-41879. doi:10.1039/c7ra08138c
  8. Kovrizhina A., 11H-Indeno[1,2-b]quinoxalin-11-one 2-(4-ethylbenzylidene)hydrazine / A. Kovrizhina, E. Samorodova, A. Khlebnikov // Molbank . 2021. 4. – 7 p.
  9. Tseng C.-H., Discovery of indeno[1,2-b]quinoxaline derivatives as potential anticancer agents / C.-H. Tseng, Y.-R. Chen, C.-C. Tzeng, W. Liu, C.-K. Chou, C.-C. Chiu, Y.-L. Chen // European Journal of Medicinal Chemistry. 2016. V. 108. – Pp.258-273. doi:10.1016/j.ejmech.2015.11.031
  10. Singh R., Recent advancement in the synthesis of diverse spiro-indeno[1,2-b]quinoxalines: a review / R. Singh, D. Bhardwaj, M. R. Saini // RSC Advances. 2021. V. 11. N. 8. – Pp.4760–4804. doi:10.1039/d0ra09130h
  11. Obota I.B., Obi-Egbedi N.O. Indeno-1-one [2,3-b]quinoxaline as an effective inhibitor for the corrosion of mild steel in 0.5M H2SO4 solution / I.B. Obota, N.O. Obi-Egbedi // Materials Chemistry and Physics. 2010. 122.  – Pp. 325-328.
  12. Buu-Hoi N.P, Soc / Buu-Hoi N.P, Saint-Ruf G. Bull. // С Fr. 1960, 1920.
  13. Pereira J.A., Quinoxaline, its derivatives and applications / J.A. Pereira, A.M. Pessoa, M.N.D.Cordeiro, R. Fernandes, C. Prudêncio, J.P. Noronha, M. Vieira // A State of the Art review. Eur. J. Med. Chem. 2015. V. 97. – Pp.664–672. doi:10.1016/j.ejmech.2014.06.058
  14. Ruhemann S. Cyclic di- and tri-ketones. J. Chem. Soc / S. Ruhemann // Trans. 1910. V 97.
  15. Granovsky A. A. Firefly version 8.0. ‒ 2016. ‒ URL: http / A. A. Granovsky //classic.chem.msu.su/gran/firefly/index.html.
  16. Becke A. D. Density-functional thermochemistry. III. / A. D. Becke // The role of exact exchange. J. Chem. Phys. 1993. T 98. N. 7. – Pp.5648-5652.
  17. Lee C. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density / C. Lee, W. Yang, R. G. Parr // Physical review B. 1988. T 37. N. 2. – P. 785. doi:10.1103/physrevb.37.785
  18. Stephens P. J., Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields / P. J. Stephens, F. J. Devlin, F. Chabalowski, M. J. Frisch // The Journal of Physical Chemistry. 1994.  T 98. N 45. – Pp. 11623-11627. doi:10.1021/j100096a001
  19. Dunning Jr T. H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen / T. H. Dunning Jr // The Journal of chemical physics. 1989. V. 90. N. 2. – P. 1007-1023.
  20. Corona P., Synthesis of N-(5,7-diamino-3-phenyl-quinoxalin-2-yl)-3,4,5-substituted anilines and N-[4[(5,7-diamino-3-phenylquinoxalin-2-yl)amino]benzoyl]-L-glutamic acid diethyl ester: Evaluation of in vitro anti-cancer and anti-folate activities / Corona, M. Loriga, M. P. Costi, S. Ferrari, G. Paglietti // European Journal of Medicinal Chemistry. 2008. N 43. – Pp.189-203. doi:10.1016/j. ejmech. 2007.03.035
  21. Grachev V. T., Tautomerism, electronic structures, and electronic spectra of indolo[2,3-b]quinoxaline and its derivatives / V. T. Grachev, V. Ivashchenko, S. P. Ivashchenko, B. G. Gerasimov, V. N. Lisyutenko, B. E. Zaitsev // Chemistry of Heterocyclic Compounds. 1982. V. 18. – Pp. 974–978. doi:10.1007/bf00513446

 

SYNTHESIS OF 6,8-DIHYDRO-11H-INDENO[1,2-b]QUINOXALINE-11-ONE AND 1,3-DIHYDRO-6H-INDOLO[2,3-b]QUINOXALINE BASED ON 4,6-DINITRO-O-PHENYLENEDIAMINE

The primary tasks of organic chemistry include the production of new nitrogen-containing heterocyclic systems. Quinoxalin derivatives are fragments of many biologically active and pharmacologically important compounds [1]: agonists and antagonists of various receptors, drugs with high antibacterial or antiviral activity [2]. In addition, they are known to be used as dyes [3], effective electroluminescent materials [4], organic semiconductors [5], "building blocks" in the synthesis of anionic receptors [6] and DNA-binding agents [7]. As part of the study, syntheses of compounds not previously described in the literature - 6,8-dinitro-11H-indeno[1,2-b]quinoxaline-1-one and 1,3-dinitro-6H-indolo[2,3-b]quinoxaline-1-one and 1,3-dinitro-6H-indolo[2,3-b]quinoxaline- were carried out. 6,8-dinitro-11H-indeno[1,2-b]quinoxalin-1-oh was obtained by the reaction of 2-amino-4,6-dinitroaniline, ninhydrin and glacial acetic acid when the mixture was heated in a boiling water bath for 6 hours and the sediment matured overnight. After filtration of the precipitate on the Schott filter, it was washed with cold isopropanol, recrystallized from ethanol, the isolated precipitate was dried at room temperature and at 60°C. 1,3-dinitro-6H-indolo[2,3-b]quinoxalin was synthesized during the reaction of 2-amino-4,6-dinitroaniline, isatin and glacial acetic acid. The mixture was heated in a boiling water bath for 9 hours. After the end of the reaction, the solution was left overnight to mature the precipitate. The next day, the sediment was filtered on a Schott filter, washed with cold isopropanol. Recrystallization was carried out from ethanol, and then the isolated precipitate was dried at room temperature and at 60°C. The structure of the obtained compounds was established using 1H, 13C NMR data and heteronuclear (HMBC, HSQC) correlation NMR spectroscopy, as well as data from elemental analysis, mass and IR spectroscopy. The developed synthesis methods are characterized by relative simplicity of execution, mild conditions, availability of reagents and allow obtaining target products with a yield of 75% (for 6,8-dinitro-11H-indeno[1,2-b]quinoxaline-11-one) and 92% (for 1,3-dinitro-6H-indolo[2,3-b]quinoxaline).

Keywords: condensation, isatin, ninhydrin, aromatic 4,6-dinitro-o-phenylenediamine, 6,8-dihydro-11H-indeno[1,2-b]quinoxaline-11-one, 1,3-dinitro-6H-indolo[2,3-b]quinoxaline.

Information about the authors: Mukhtorov Loik Gurgovich – Tula State Pedagogical University named after. N. Tolstoy, Center for Advanced Technological, Chemical and Biotechnological Excellence, Researcher Address: 300026, Tula, Lenin Ave., 125. LLC "Lvinka". Phone: +7 (953) 188-46-16. E-mail: mukhtorov.loik@mail.

Karimov Makhmadkul Boboevich – Branch of the National Research Technological University “MISiS”, Doctor of Chemical Sciences, Professor. Address: Republic of Tajikistan, Dushanbe, Nazarshoeva street, 7. Phone: +992 (919) 410241. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Shakhkeldyan I.V. Department of Chemistry. Tula State Pedagogical University named after L.N. Tolstoy. Lenin Avenue, 125, Tula, 300026. Russia. Tel: 8 (4872) 357808; E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..     

Atroshenko Y.M. Center of Technological Excellence "Advanced Chemical and Biotechnologies" FGBOU VO "Tula State Pedagogical University named after L.N. Tolstoy". Lenin Avenue, 125, Tula, 300026. Russia. Tel: +7 (919) 0870595; E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

 

Article received 25.12.2023

Approved after review 17.02.2024

Accepted for publication 08.04.2024

   
© ALLROUNDER